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Abstract
We discuss several different techniques for evaluating the Green function for a
semi-infinite system using a localized basis. We demonstrate that the different
techniques are different ways of calculating the self-energy associated with the
surface. They give equivalent results but have different convergence properties.
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1. Introduction

The single-particle Green function (GF) is a useful tool for studying the properties of materials
because it can be used to express all of the observable properties of the system of interest [1]
and because it has other advantages including the following:

(1) It allows one to efficiently treat complicated systems starting from more idealized ones
by treating the complexity as perturbation. For example, in order to obtain the electronic
structure of a periodic system with a localized impurity or defect one starts from the
GF of the perfect periodic system and treats the impurity as a perturbation. Similarly,
the presence of a surface can be considered to be a perturbation to the GF of an infinite
medium.

(2) The Green function is very useful for calculating the response of a system to external
fields, e.g. transport properties in linear response [2, 3].

(3) The Green function is convenient for treating disordered systems because its average over
configurations (instances of a system) can be used to obtain configuration properties,
whereas the configurational average of a wavefunction is typically meaningless [4].

For these reasons, the ability to calculate the GF of a system with an arbitrary geometry is
very important. For a finite system, the GF may be evaluated using localized basis functions
quite simply as the inverse of the Hamiltonian operator in real space. Similarly, the GF for
an infinite periodic system may be obtained as the inverse of the Hamiltonian in reciprocal
space. However, in the case of semi-infinite systems, e.g. an infinite periodic system with a
surface, we encounter a problem because the Hamiltonian cannot be directly inverted in real
space due to the fact that the Hamiltonian matrix is infinite, nor can the problem be trivially
reformulated in reciprocal or momentum space because translational symmetry in the direction
perpendicular to the surface is lacking.

We shall review several approaches that have been used to obtain the GF of semi-infinite
systems, sometimes referred to as the surface Green function (SGF). The same methods can
be used to obtain the GF of infinite periodic systems or bulk GF (BGF). Without attempting a
detailed classification, we have grouped the methods into three groups—(1) those based on the
recursion relation for the SGF, (2) accelerated iteration based on amplitude transfer matrices
and (3) an eigenvalue approach based on direct calculation of the wavefunction coefficients and
the relative phase of wavefunctions on adjacent layers. In addition, we review a ‘bond-cutting’
approach that can be used to calculate the GF for a semi-infinite system by cleaving the infinite
system into two semi-infinite pieces.

We shall show that these different approaches yield equivalent results for the Green
function, but that their convergence properties differ. These methods and their variations were
developed at different times and by different groups. Moreover, they were each formulated
and implemented in the framework of the particular problems of immediate concern to their
developers. This obscures the relationships between the methods and makes it difficult to
extend a method to a more general problem. For these reasons, it is not straightforward for a
person venturing into this field to see the whole picture and to choose the optimal technique
for the problem at hand. In this paper, we attempt to present a unified treatment of the various
methods of calculating the GF for semi-infinite systems or systems with a surface or interface.

We discuss systems that are either finite in the plane of the surface or have translational
symmetry in the plane of the surface or interface. However, the physical requirement is a
separation of the transverse normal modes of the system so that each of these modes (sometimes
called channels) can be treated independently. In the case of systems finite in the plane of the
interface no separation is necessary, the whole system can be treated at once (at least in
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principle). In the case of systems that are infinite but translationally invariant in the plane of
the interface such a separation can be achieved by means of a Fourier transform. Systems
that are infinite and disordered can be treated within the coherent potential approximation [5]
which essentially recovers the translational invariance.

We consider only ideal interfaces; topics such as surface reconstruction are beyond the
scope of this paper. However, the GF of the ideal surface is usually the starting point for
studies of more general systems. All of the methods discussed can treat a finite number of
inequivalent layers near the surface or interface. The final results are expressions for the on-site
GF of an arbitrary layer in bulk or the surface layer in the case of a semi-infinite geometry. The
knowledge of the on-site GF, however, is enough to obtain the GF matrix elements between
arbitrary layers. Moreover, the GF of a system with multiple interfaces can be obtained from
the GFs of the parts by mapping the influence of one part of the system on the other via a
self-energy term. A more formal approach to obtaining the GF of a system with interfaces is
the method of surface Green function matching [6].

Although we are mostly concerned with the development of the GF methods, it is worth
mentioning a few of the applications. This area of research is vast and in this paper we do
not attempt to give a comprehensive review of it. Our discussion is based on our experience
in electron transport in solids, which is treated using an electronic Hamiltonian on a discrete
set of localized basis functions on a lattice. In this form the GF formalism has been used
to study transport through mesoscopic devices [7], exchange coupling, giant and tunnelling
magnetoresistance [8, 9] and surface and interface states [6]. Other excitations, e.g. phonons
and magnons, can be treated using an equivalent formalism [5]. GF methods have been
applied, for example, to study phonons and lattice dynamics [10]. The zero-frequency limit of
this approach, i.e. static elastic Green functions, have been used to treat strains associated with
planar defects in crystals [11, 12]. Our discussion is restricted to Green functions that can be
represented by matrix inverses; however, the GF formalism is equally well developed for the
case of continuous media [2, 6]. Moreover, by exploiting the analogy between electronic and
classical waves, the GF method has been formulated to study elastic waves [13].

We will show that the different methods for calculating the surface GF amount to different
ways of calculating the self-energy associated with the surface. The work is organized as
follows. In section 2 we introduce a general localized basis in which we write the secular
and the GF equation. For systems which are infinite and periodic in the plane of the interface
systems we use a Fourier transform in the plane of the interface to reduce the secular equation to
a one dimensional form. In section 3 we introduce the self-energy associated with the surface;
in sections 4, 5, and 6 we discuss the recursion, iterative and eigenvalue methods respectively;
and the convergence of the different methods is discussed in section 7; finally, in section 8 we
discuss how to obtain off-diagonal GF matrix elements.

2. Localized basis and separation of transverse modes

The GF formalism that we employ is based on the assumption that the wavefunction can
be expanded in terms of orbitals localized around each atomic site (LCAO). However, the
formalism is more general. For example, similar techniques for the surface GF have been
employed in the context of multiple-scattering theory (MS) [14] using a non-localized plane
wave basis set. Also, analogous expressions for the GF have been obtained in the basis of linear
combinations of muffin-tin orbitals (LMTO) [15]. We employ LCAO because the physical
picture is clearer and the formulation simpler; however, it is not an inherent limitation of the
methods.
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We assume the system to be translationally invariant in the plane of the surface or interface.
However, the translational invariance is broken in the direction perpendicular to the surface,
say z. The principal layer (PL) is the unit cell in the z direction which can consist of one or
more atomic layers. Interaction beyond neighbouring PLs is neglected. The planar orbital is
defined as a state formed out of the atomic states explicitly satisfying the Bloch theorem in the
plane of the surface

|k̄, z, α, i〉 = 1√
Nx Ny

∑
R̄

eik̄·R̄|R̄, z, α, i〉 (1)

where R̄ is the projection of the lattice vector in the plane, z labels the principal layer, i labels
the atomic layer within the principal layer and α is a combined spin and orbital index.

The wavefunction of the system can be expanded in terms of the planar orbitals,

|ψ(k̄kz)〉 =
∑
z,αi

Cz,αi |k̄, z, α, i〉, (2)

where

Cz,αi = eikz zCαi , (3)

and all normalization coefficients are absorbed into the expansion coefficient.
In the basis of planar orbitals, the Schrödinger equation H |ψ〉 = E |ψ〉 becomes∑

m

H̄nmCm = 0, (4)

where matrix multiplication over the indices within the PL is understood and H̄ is defined

H̄nm|αiβ j = 〈k̄, n, αi |H − E |k̄,m, β j〉 = Hnm|αiβ j − E Snm|αiβ j , (5)

where H is the Hamiltonian matrix in the planar orbital basis and S is the overlap matrix
of the basis functions. In many applications the planar orbitals are assumed orthogonal
Snm|αiβ j = δnmδαβδi j . We have not made this assumption but to simplify the notation we
have assimilated the basis overlap S in the definition of the Hamiltonian matrix elements H̄ .

The equation for the Green function in operator form (E − H )G = 1 can be written in
the same representation as∑

m

H̄n,mGm,n′ = −δnn′, (6)

where Gm,n′ stands for the matrix elements of the GF in the planar orbital basis.
Due to our use of the concept of principal layers, the sum over z in the equations above

contains only three terms

H̄n,n+1Cn+1 + H̄n,nCn + H̄n,n−1Cn−1 = 0, (7)

H̄n,n+1Gn+1,n′ + H̄n,nGn,n′ + H̄n,n−1Gn−1,n′ = −δnn′. (8)

Further simplification can be accomplished using the translational invariance of the bulk
H̄n,m = H̄m−n. Choosing n′ = 0 as a reference layer we can write equations (7) and (8)
as

H̄1C1 + H̄0C0 + H̄1̄C1̄ = 0, (9)

H̄1Gn+1,0 + H̄0Gn,0 + H̄1̄Gn−1,0 = −δn0. (10)

For a finite system, we expand the wavefunction in the atomic orbitals, |R̄, z, α, i〉, instead
of the planar orbitals. All equations derived remain exactly the same except that there is no k̄
index and all quantities are matrices with respect to R̄ which labels the atomic positions in the
plane.
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Figure 1. (a) Surface of a semi-infinite system showing the surface region (C) and semi-infinite
lead (A) in which all principal layers are identical; (b) multiprobe geometry showing sample region
(C) and semi-infinite leads (Ai ).

3. Self-energy of surfaces and interfaces

There are many reasons that one may need to calculate the GF for a semi-infinite system.
Most obviously, if one is interested in the properties of a surface, figure 1(a), the surface
projection of the GF for a semi-infinite system is needed. Another important use for the
GF for a semi-infinite system is the calculation of transport properties, figure 1(b). In the
most general geometry involving electron transport through a sample, there are a number of
long leads Ai , i = 1, . . . , N , attached to a finite central region C . The leads are assumed
much longer than the region of interest and are usually considered to be semi-infinite. In this
application, the GF for each of the semi-infinite leads is needed. In general, the leads will have
a finite cross-section. In the simplest cases, however, both the leads and the sample may be
approximated as translationally invariant in the plane of the interface.

3.1. Connecting two systems

Let us first consider two systems A and B before they are brought into contact as shown in
figure 2(a). We denote the Green functions of the two disconnected systems as G0

AA and G0
B B ,

respectively. We then bring the systems into contact by introducing some overlap Vab and Vba

which is localized around the interface. Then the GF of the combined system can be found by
treating V as a local perturbation

G = (E − H0 − V )−1 = ((G0)−1 − V )−1. (11)

Explicitly,

G =
(
(G0

AA)
−1 −VAB

−VB A (G0
B B)

−1

)−1

, (12)
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Figure 2. (a) Creating one material from two isolated pieces (A) and (B); (b) splitting the material
into two isolated pieces (A) and (B) by bond cutting and (c) by atom removal.

where the matrices VAB and VB A are zero except for the small part around the interface, Vab

and Vba respectively. After inverting we obtain

G AA = ((G0
AA)

−1 − VabG0
bbVba)

−1,

G B B = ((G0
B B)

−1 − Vba G0
aaVab)

−1,

G B A = G0
BbVba Ga A,

G AB = G0
Aa VabGbB .

(13)

Here the lower case indices on the potentials, V , and on the GFs, G, indicate that the
perturbation is confined to the interface between the two systems.

This simple result is quite significant. We can take into account the influence of a large
part of the system on the other part via a small matrix due to the limited range of the interaction
between the two parts. The term has the form of a self-energy � = G−1

0 − G−1. The self-
energy added to the GF of part B due to the presence of part A is � = Vba G0

aa Vab. The
self-energy added to the GF of part A due to the presence of part B is � = VabG0

bbVba . Thus,
for the system with a surface in figure 1(a), we can include the effects of the substrate A on
the GF of the surface C through a small self-energy term that depends only on the substrate.

In a similar way, we can attach many regions A to region B . The self-energies due to the
influence of different adjacent regions (Ai , i = 1, . . . , N) on a region B are additive if the
adjacent regions overlap only with region B and not with each other

G B =
(
(G0

B)
−1 −

N∑
i=1

�Ai

)−1

, (14)
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where �Ai = VBi G0
ii Vi B and the superscript 0 stands for the GFs of the isolated parts. Thus,

for the electron transport set-up in figure 1(b), we can map the influence of all semi-infinite
leads Ai onto the GF of the probe C via small size additive terms. These self-energies can be
viewed as the escape rates of the carriers in the leads.

3.2. Green function of a system with interfaces

From a different perspective equation (13) can be used to obtain all of the GF matrix elements
of a system with an interface given the GFs of the separate parts. G AA and G B B represent the
matrix elements for the total system Green function that connect sites within the A and B parts
of the system respectively, and G AB and G B A represent matrix elements of the total GF that
connect sites across the interface. Thus we can use the results of the previous subsection to
derive the formulas of the surface Green function matching method [6]. To do this, we rewrite
equation (11) in the form

G = G0 + G0T G0,

T = V (1 − G0V )−1,
(15)

where G0 represents the GF of the separate parts and V is the localized potential at the
surface. The reason we do this is that the matrix T has elements only in the surface region
i.e. T = Vss(1 − G0

ss Vss)
−1 where s = a

⋃
b is the surface region.

Then projecting equation (15) onto the interface region and solving for T we obtain

T = G0−1(G − G0)G0−1, (16)

where G0 = G0
ss is the surface projection of the GFs of the parts and G = Gss is the surface

projection of the matched GF. Then we can obtain the matched GF of the whole system from
equation (15) to be

G AA = G0
AA + G0

AaG0−1
aa (Gaa − G0

aa)G0−1
aa G0

a A,

G AB = G0
AaG0−1

aa GabG0−1
bb G0

bB ,
(17)

because the GFs of the parts do not have matrix elements across the interface. Thus, we have
managed to obtain all of the GF matrix elements of the system with interfaces via the surface
projection of the matched GF G.

The surface projection of the matched GF can be obtained directly from equation (12)
when applied to the interface region

G = (G0
aa + G0

bb −�H)−1, (18)

where �H accounts for surface perturbation. The surface perturbation in the simplest case
is just the cross coupling through the interface V . In principle it can contain more involved
physics e.g. a Schottky barrier, defect or other surface effects.

3.3. Bond cutting and atom removal

In section 3.1 we showed that the BGF could be obtained by joining two SGFs. Not surprisingly,
a similar technique can be used to solve the opposite problem, that is, to obtain the GF of the
parts from the GF of the whole. The GF of a semi-infinite medium can be obtained by splitting
the GF of the bulk into two isolated parts by either bond cutting or atom removal [16]. In
order to use this approach, one removes enough atoms or cuts enough bonds at the surface
that the parts on either side no longer interact with each other. The orbital cutting technique
is illustrated in figure 2(b). One switches off the interaction between atoms by introducing an
additional interaction of equal magnitude and opposite sign. If G0 is the bulk GF, Vab = −H1,
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and Vba = −H1̄, where H1̄ = H †
1 is the bulk Hamiltonian matrix between principal layers,

equation (11) becomes

G = −







. . .

H̄0 H̄1

H̄1̄ H̄0

. . .


 +




. . .

0 −H̄1

−H̄1̄ 0
. . .







−1

=
(

G AA 0
0 G B B

)
,

(19)

where G AA and G B B are by definition the surface GFs. For a practical calculation, the most
convenient starting point is equation (15) where G0 is this time the bulk GF. The GF matrix
elements are

GSS = G0
SS + G0

SsTss G0
sS, (20)

where S = A
⋃

B . The GF matrix element between layers on the opposite side of the surface
must be zero which is a useful check for ensuring that the bonds have been cut correctly.

The atom removal technique, figure 2(c), produces the same result by setting the atomic
energy levels of the atoms at the interface to infinity. If G0 is again the bulk GF and
Vab = Vba = 0, Vaa = Vbb = u → ∞ then equation (11) becomes

G = −







. . .

H̄0 H̄1

H̄1̄ H̄0

. . .


 +




. . .

u 0
0 u

. . .







−1

→



G AA 0 0 0
0 0 0 0
0 0 0 0
0 0 0 G B B


 ,

(21)

where we have explicitly inverted the block matrix and set u → ∞. The matrices G AA

and G B B in the final result are exactly the SGFs and thus the equivalence between the bond
cutting and atom removal techniques is clear. For practical calculations one starts again from
equation (15). The GF matrix elements between the surface region s and the remainder of the
system S̄ = (A

⋃
B)/s are

Gss = G0
ss + G0

ss Tss G0
ss,

GS̄s = G0
S̄s

+ G0
S̄s

Tss G0
ss,

GsS̄ = G0
s S̄

+ G0
ss Tss G0

s S̄
,

GS̄S̄ = G0
S̄ S̄

+ G0
S̄s

Tss G0
s S̄
.

The next step is to observe (from equation (15)) that T → −(G0
ss)

−1 when u → ∞. Therefore,
the matrix elements between the surface region and the remainder of the system vanish and all
others are determined from the BGF matrix elements

Gss = GS̄s = GsS̄ = 0
GS̄S̄ = G0

S̄ S̄
− G0

S̄s
(G0

ss)
−1G0

s S̄
.

(23)

In general, the atom removal method involves surface matrices a factor of two smaller compared
to the bond cutting method and is less prone to errors.

This technique is powerful if one already has the BGF. The BGF is normally obtained
from the spectral representation of the GF [16]. However, we will show in section 6 that if
we solve for the eigenfunctions and eigenvalues of the Hamiltonian we can construct the SGF
directly without any need to first calculate the BGF and then cleave the medium.
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4. Recursion relation for the self-energy

We can now concentrate on obtaining the GF of a single semi-infinite medium. The recursion
or continued fraction method [17]1 relates the GF of a given layer Gn,n to the GFs of the
neighbouring layers (Gn+1,n+1 and/or Gn−1,n−1). If we start with the surface layer n = 0 and
execute this process to infinite depth we will account for the influence of all layers on the
surface layer. However, in practice one must end the recursion at some finite depth, which will
amount to taking into account the influence of a finite number of neighbouring layers on the
surface layer. Equivalently, the recursion can be easily reformulated as iteration [19], where
the estimation of the GF of a given layer on a given step G(n) is related to the estimation of
the GF on the previous step G(n−1). However, a finite number of iterations is equivalent to
executing the recursion to a certain depth. Thus, both formulations amount to truncations of
the semi-infinite medium at a finite number of layers from the surface. However, the recursion
or iterative methods have a significant advantage over simple truncation because successive
iterates can be used to estimate the error in the truncation as we discuss in section 7.

These techniques effectively truncate the medium to a finite number of layers at the
surface. This leads to a finite GF with a finite set of poles and a density of states (DoS) that
is everywhere discontinuous. As more and more layers are added, however, the distribution
of the poles becomes more and more dense. If a small imaginary part is added to the energy,
the analytic properties of the GF calculated for the truncated system can be made to approach
arbitrarily close to that of the exact GF. This is demonstrated and discussed more carefully
in section 7. The three approaches of simple truncation, recursion and simple iteration are
implemented differently but they share the same physical idea and their complexity increases
linearly with the depth to which the calculation is carried. Due to their common convergence
properties we will refer to these techniques collectively as the recursion method. Variations
of these methods have been so popular that one cannot hope to list all their applications, but
refer the reader to [18].

One way to find an expression for the SGF is to map the semi-infinite problem onto the
problem discussed in the previous section. According to the prescription of that section, we
split the semi-infinite medium into two parts. The first part is the PL at the surface and the
second part is the remainder of the system which is itself semi-infinite. In the notation of the
previous section, C is the isolated PL at the surface, labelled 0 hereafter, and A are the PLs
numbered 1 to ∞. Thus, an expression for the GCC part of the GF can be obtained immediately
from equation (14) accounting for region A through the surface self-energy term

GR
00 =

((
G0

00

)−1 − H01G11 H10

)−1 =
((

G0
00

)−1 −�R
00

)−1
, (24)

where G0
ii = (E Sii − Hii)

−1 is the GF of an isolated PL.
We can continue this process of splitting the semi-infinite part into a surface PL and a

semi-infinite remainder. At the next step this will amount to applying the formula recursively
for G11 to obtain

�R
00 = H01

((
G0

11

)−1 −�R
11

)−1
H10. (25)

In general, the self-energy in PL i due to the next PL is given by

�R
i,i = Hi,i+1Gi+1,i+1 Hi+1,i = Hi,i+1

((
G0

i+1,i+1

)−1 −�R
i+1,i+1

)−1
Hi+1,i , (26)

1 It should be noted that the technique described here applied to a general three-dimensional medium is more general
than the version for a layered medium we utilize. The application here is a special case of their procedure.
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for the case of a left surface (i > 0) and

�L
i,i = Hi,i−1Gi−1,i−1 Hi−1,i = Hi,i−1

((
G0

i−1,i−1

)−1 −�L
i−1,i−1

)−1
Hi−1,i , (27)

in the case of a right surface (i < 0).
The same procedure can be used to determine the GF for an infinite solid. This time we

split the bulk into three parts—central, left and right—and then using equation (14) the GF for
the central region can be written as

G00 =
((

G0
00

)−1 − H01G11 H10 − H01̄G 1̄1̄ H1̄0

)−1 =
((

G0
00

)−1 −�L
00 −�R

00

)−1
, (28)

where �L
00 and �R

00 are given by equations (27) and (26) respectively.
In the particular case in which the hopping integrals are scalar, the expression for the

surface GF acquires the familiar continued fraction form

GR
00 = 1

E − H00 − H01H10

E − H11 − H12 H21
E−H22−···

, (29)

where there are only two types of term entering this expression: ai = (E − Hi,i)
−1 and

bi = Hi,i+1ai+1 Hi+1,i (in the case of a homogenous system these are all the same). A similar
expression can be written for the bulk GF.

Notice that to this point we have not made an assumption that the medium is homogenous
i.e. consists of repeating identical layers. In this respect, the recursive method is more general
than simple iteration, accelerated iteration (section 5) or eigenvalue (section 6) methods and it
is the only method to use for infinite, non-periodic solids.

If the solid consists of identical layers, then Hn,n+1 = H1, Hn,n−1 = H1̄, G0
nn = G0

00 and
the recursive expression equation (27) becomes

� = H1

((
G0

00

)−1 −�
)−1

H1̄. (30)

An identical expression holds for the self-energy on the other side.
Since all quantities are in general matrices this is a non-linear system of equations which

could be solved exactly using a non-linear solver such as Newton–Raphson [20]. If H0 and
H1 are scalars, the solution is trivial. For example, for a linear chain with on-site energies
ε0 and nearest neighbour hopping matrix elements w, the recursion for the self-energy of a
semi-infinite chain is

� = w2[ε − ε0 −�]−1. (31)

Defining σ = �/w and x = (ε−ε0)/w, equation (31) can be written as σ = (x −σ)−1 which

has solutions σ = x
2 ±

√
x2

4 − 1. The choice of solution is determined by the requirement that
Im� < 0 for a causal Green function.

A practical way of solving the non-linear equation (30) is through iteration

�(n+1) = H1

((
G0

00

)−1 −�(n)
)−1

H1̄, (32)

where�(0) = 0. This is in essence the simple iteration technique. Another way to reformulate
the recursive method into an iterative method is to use objects called amplitude transfer matrices
(ATMs). The ATMs are defined by

Gn+1,m = T Gn,m n � m,
Gn−1,m = T̄ Gn,m n � m,

(33)



Topical Review R647

so that they transfer the amplitude of a unit source to the right/left respectively. This is the
method we will develop further since it leads naturally into the accelerated iteration technique
described in the next section.

The expression for the site-diagonal part of the BGF is obtained from equation (10) when
n = 0

H̄1G10 + H̄0G00 + H̄1̄G 1̄0 = −1, (34)

from which using the definition of T and T̄ we obtain

G00 = −(H̄0 + H̄1T + H̄1̄T̄ )−1. (35)

In the case of left or right surface the corresponding Hamiltonian matrix elements are set to
zero and one obtains the expressions

GR
00 = −(H̄0 + H̄1T )−1,

GL
00 = −(H̄0 + H̄1̄T̄ )−1,

(36)

for the right and left SGF, respectively. By comparison with equations (28) and (24), it becomes
clear that the amplitude transfer matrix is proportional to the self-energy or to the SGF

�R = H1T T = GR
00 H1̄,

�L = H1̄T̄ T̄ = GL
00 H1.

(37)

An expression for the ATMs is obtained from equation (8) for n′ = 0 and n ≶ 0

Gn,0 = −H̄ −1
0 (H̄−1Gn−1,0 + H̄1Gn+1,0). (38)

For n > 0, using the definition of T , equation (33), we can obtain

T = −(1 + H̄ −1
0 H̄1T )−1 H̄ −1

0 H̄−1. (39)

Equivalently, for n < 0 using the definition of T̄ we can obtain

T̄ = −(1 + H̄ −1
0 H̄−1T̄ )−1 H̄ −1

0 H̄1. (40)

We can label u0 = −H̄ −1
0 H̄−1 and v0 = −H̄ −1

0 H̄1 and the expressions would be

T = (1 − v0T )−1u0,

T̄ = (1 − u0T̄ )−1v0.
(41)

Note that if H̄−1 = H̄1 the equations for T and T̄ become equivalent.
The equations (41) are solved iteratively

T (n+1) = (1 − v0T (n))−1u0,

T̄ (n+1) = (1 − u0T̄ (n))−1v0,
(42)

where T (0) = 0 and T̄ (0) = 0.
This method for calculating the self-energy accounts for the influence of one more layer

at every order of the approximation. In other words, every iterative step adds the next order of
diagrams to the GF expansion. In order to visualize this process, we assign to H1 an arc going
forward, H1̄, an arc going backwards and a vertex to H̄0. Then the lowest order approximation
to the self-energy of the surface is a loop shown in figure 3(a). In this case T (0) = u0,
�(0) = −H̄1 H̄ −1

0 H̄−1 and the diagram represents one excursion to the next PL. The first order
approximation is obtained by replacing T (0) in equation (33). The diagrams obtained from a
geometric progression with multiple v0u0 are shown in figure 3(b). These diagrams represent
all possible excursions to the neighbouring layer. The second order approximation to T has the
same form where every vertex is replaced with T (1). As a result, in the expression for the self-
energy will appear diagrams which are all possible products of two loops. A typical diagram is
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Figure 3. Diagrammatic expansion of the surface self-energy: (a) lowest order contribution,
(b) one-layer contribution and (c) typical two-layer diagram.

shown in figure 3(c); it represents several excursions to layer 1 followed by excursions to layer
2. In this manner, every successive approximation will add an extra layer to the approximate
expression for the self-energy. This perturbation theory relies on the smallness of the inter-
layer hopping elements for convergence. However, one can imagine that the convergence
would not be that good if the system has strong although limited range interaction. Summing
to a given order N corresponds to truncation to N layers at the surface.

5. Accelerated iteration

In this section, we show that it is possible to accelerate the iteration scheme developed in the
last section. The idea is that of layer doubling, i.e. on every step two slabs of the same number
of layers are connected as opposed to connecting the slab to the neighbouring layer only. This
technique can be implemented in terms of GFs [21] or ATMs [22]. We will show in section 7
that the convergence properties of the accelerated iteration scheme dramatically differ from
the recursion method.

Following the derivation in [22] we apply equation (38) recursively for Gn−1,0 and Gn+1,0.
We obtain an equation that relates Gn,0 to Gn±2,0

Gn,0 = u1Gn−2,0 + v1Gn+2,0 (43)

where we labelled u1 = (1 − u0v0 − v0u0)
−1u2

0 and v1 = (1 − u0v0 − v0u0)
−1v2

0 . After i
iterations we obtain the general equation

Gn,0 = ui Gn−2i ,0 + vi Gn+2i ,0 (44)
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where

ui = (1 − ui−1vi−1 − vi−1ui−1)
−1u2

i−1,

vi = (1 − ui−1vi−1 − vi−1ui−1)
−1v2

i−1.
(45)

It is clear that after i iterations we have taken into account the interactions with 2i adjacent
layers.

Let us now take n = 2i and write down the first few equations

G1,0 = u0G0,0 + v0G2,0 i = 0

G2,0 = u1G0,0 + v1G4,0 i = 1

. . .

G2i ,0 = ui G0,0 + vi G2i+1 ,0 i

(46)

then plugging them in in reverse order and taking into account that we can iterate until vi is
arbitrarily small we obtain the formula for G1,0 = T G0,0 where

T = u0 + v0u1 + v0v1u2 + · · · + v0 · · · vi−1ui + · · · . (47)

Alternatively, for n < 0, we can show that G−1,0 = T̄ G0,0 where

T̄ = v0 + u0v1 + u0u1v2 + · · · + u0 · · · ui−1vi + · · · . (48)

We can explicitly show the equivalence of T ’s and the self-energy by plugging the definitions
of u and v into the expression for the transfer matrices. The successive approximations to
the ATMs double the number of layers taken into account. Looking at equation (45) we can
see that while u0 represents a single loop, u1 already contains all possible diagrams between
two single layers. Similarly, ui contains all possible diagrams between two super-layers each
consisting of n individual layers. The role of v0 · · · vi−1 is to gradually build all diagrams
of a super-layer of order i − 1 starting from a single layer; finally, ui produces the diagrams
between two such layers.

It should be noted that both this accelerated iteration technique and the iteration technique
discussed in the previous section effectively calculate the self-energy for a finite system. For
the simple iterative procedure, the self-energy produced after N iterations corresponds to a
system with N layers while for the accelerated technique it corresponds to a system of 2N

layers. It is easy to see, for example, by examining the analytic structure of the self-energy
of the simple linear chain, that the analytic structure at any level of approximation using the
iterative procedures differs from that of the truly infinite system. The convergence of the Green
function and self-energy will be studied in detail in section 7. In the next section we shall
develop a procedure for calculating the self-energy that does not rely on an iterative procedure.

6. Eigenvalue method

The set of propagating and evanescent states of the Hamiltonian is referred to as the complex
band structure (CBS) of the system. Knowledge of the CBS is necessary in order to construct
the GF from its spectral representation [16, 23]. However, this approach has been hampered
by the problem of obtaining the CBS by finding complex roots of the characteristic polynomial
of the secular equation. It turns out, however, that the CBS can be obtained by diagonalizing
the companion matrix of the Hamiltonian [24, 25].

For an infinite periodic system, the wavefunction on adjacent layers is related by a phase
factor equation (3). Determining the phase factor from equation (9) is difficult because
it involves finding roots of a complex polynomial. However, it is possible, following the
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derivation in [25], to write equation (9) as an eigenvalue equation so that the phase factor is
just the eigenvalue of the companion matrix of the Hamiltonian( −(H̄1)

−1 H̄0 −(H̄1)
−1 H̄1̄

1 0

) (
C0

C1̄

)
= eikz�z

(
C0

C1̄

)
, (49)

where the second line is just the definition C0 = eikz�zC1̄. The CBS consists of both the
real and complex values of kz which satisfy equation (49). A brief summary of the method
employed to solve for the CBS is given in the appendix. The eigenstates can be separated
into propagating (decaying) to the right k>z and propagating (decaying) to the left k<z with
eigenvectors C> and C< respectively.

In a similar way, following [24], we can write equation (10) for the Green function in the
form( −(H̄1)

−1 H̄0 −(H̄1)
−1 H̄1̄

1 0

)(
Gn,0

Gn−1,0

)
=

(
Gn+1,0

Gn,0

)
+

(
(H̄1)

−1δn,0

0

)
. (50)

Here the second line is the tautology Gn,0 = Gn,0. Equation (50) defines a transfer matrix T
because it relates the GF of PLs n (n − 1) to the GF at PL n + 1 (n). The inverse of the transfer
matrix T −1 will do the opposite, i.e. it will relate the GF of PLs n + 1 (n) to the GF at PLs n
(n − 1). Incidentally, the transfer matrix is just the companion matrix of the Hamiltonian and
equation (49) can be reinterpreted as the eigenvalue equation of the transfer matrix.

We can use equation (50) to obtain an expression for the GF. If the GF satisfies equation (50)
for n > 0 and it is normalizable at infinity

T
(

Gn,0

Gn−1,0

)
=

(
Gn+1,0

Gn,0

)
(51)

then the GF must expand only into right going states as follows:(
Gn+1,0

Gn,0

)
=

(
C>

n+1g1

C>
n g1

)
(52)

where g1 is a coefficient to be found. Vice versa, if the GF satisfies equation (50) for n < 0
and it is normalizable at minus infinity(

Gn,0

Gn−1,0

)
= T −1

(
Gn+1,0

Gn,0

)
(53)

then the GF must expand only into left going states(
Gn,0

Gn−1,0

)
=

(
C<

n g2

C<
n−1g2

)
(54)

where g2 is another coefficient to be determined. Notice that the same wavefunction coefficients
C are used in both expressions because T and T −1 must have the same set of eigenvectors
since every matrix commutes with its inverse. For n = 0 we have( −(H̄1)

−1 H̄0 −(H̄1)
−1 H̄1̄

1 0

) (
C<

0 g2

C<

1̄
g2

)
=

(
C>

1 g1

C>
0 g1

)
+

(
(H̄1)

−1

0

)
. (55)

The second line of this equation yields g1 = (C>
0 )

−1C<
0 g2 and the first line

H̄0C<
0 g2 + H1̄C<

1̄
g2 + H1C>

1 g1 = 1 (56)

which can be solved for g2 and for the GF, respectively,

G00 = −C<
0 g2 = −(H̄0 + H1̄C<

1̄ (C
<
0 )

−1 + H1C>
1 (C

>
0 )

−1)−1. (57)
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Again, by comparison with equation (35) one can obtain the expressions for the amplitude
transfer matrices to be

T = C>
1 (C

>
0 )

−1

T̄ = C<

1̄
(C<

0 )
−1.

(58)

In this notation the ATMs have very clear physical meaning; they destroy amplitude at the
reference layer and create the corresponding amplitude one layer to the right/left. One can
check that these are the same amplitude transfer matrices we had before, i.e. they satisfy the
formal definition for the ATMs. If we label 	≷ to be the diagonal matrix of the eigenvalues
of T then

T = C>
0 	

>(C>
0 )

−1

T̄ = C<
0 (	

<)−1(C<
0 )

−1 (59)

using equation (3) again. Applying the ATMs to the wavefunction yields

T C>
0 = C>

0 	
> = C>

1

T̄ C<
0 = C<

0 (	
<)−1 = C<

1̄

; (60)

in other words the action of the transfer matrices is like multiplying the states (columns of C)
by their respective phases.

Similarly, we can find that the action on the GFs

T Gn,0 = T C>
n g1 = C>

n+1g1 = Gn+1,0 n � 0
T̄ Gn,0 = C<

n g2 = C<
n−1g2 = Gn−1,0 n � 0

(61)

relates the GFs of adjacent layers as expected. Thus the eigenvalue approach yields the ATMs
which can be used to construct the surface self-energies and Green function as demonstrated
in section 4.

7. Convergence

In the simple truncation approach, the GF is calculated using a finite number of layers close
to the surface. In the recursion (simple iteration) and the accelerated iteration methods,
performing a given finite number of steps also amounts to truncating the semi-infinite medium
at a given number of layers from the interface. However, unlike simple truncation, the
error of the truncation can be estimated. In this respect these methods represent controlled
approximations. The ATM is approximated by a series T = ∑

i ai and T n = ∑n
i=1 ai is

the nth partial sum of the series. The Cauchy convergence criterion states that ∀ε > 0
and ∀p > 0 ∃n > 0 : |T n+p − T n| < ε. In particular (p = 1), this means that
∀ε > 0 ∃n > 0 : |an| < ε. Thus the condition that the term in the series an → 0 is
a necessary but not a sufficient condition for convergence. However, checking the Cauchy
criterion would require the ability to calculate T to arbitrary order; therefore, in practical
calculations the weaker criterion is used.

The density of states of a finite number of layers consists of discrete poles which
approximate a branch cut only if we introduce broadening via a small complex part added to
the energy. The small complex part is also necessary for numerical stability. As an illustration,
we consider a one-dimensional (1D) semi-infinite chain of atoms with only one band. The
analytical results for such a system are well known [26]. The parameters of the model are
H0 = t and H1̄ = H1 = w. In figures 4(a) and (b), the imaginary and real parts of the
surface GF of this chain are shown. The converged result is compared to the result obtain
using the simple iteration method (recursion and simple truncation have the same convergence
properties) for small number of iterations (n = 30). In figures 4(c) and (d), the converged



R652 Topical Review

Figure 4. Surface Green function versus energy for a 1D semi-infinite chain: (a) − Im G (n = 30),
(b) Re G (n = 30), (c) − Im G (n = 300), (d) Re G (n = 300) after n iterations of the recursive
approximation; an imaginary part δ = 10−2 is added to the energy. The result is compared to the
result converged to precision ε = 10−6.

GF is compared to the GF obtained after a much larger number of iterations (n = 300). The
imaginary part of the energy is δ = 0.01 and the convergence criterion is ε = 10−6. The
graphs are shown in dimensionless units g = wG versus x = (E − t)/w where G and E are
the GF and the energy respectively.

In figures 5(a) and (b), the imaginary and real parts of the bulk GF are shown. The
converged result is compared with the result obtained using this accelerated iteration method
for small number of iterations (n = 5). In figures 5(c) and (d), the same functions are plotted
after a few more iterations of the iterative method. Compared to the recursive method (figure 4),
fewer iterations are needed to obtain convergence.

The result of the eigenvalue method is indistinguishable from the converged result in
figures 4 and 5. The eigenvalue expression for the ATMs represents a continued fraction that
is not truncated.

The analytic result is approached as we let the imaginary part of the energy δ → 0.
Use of large δ converges the result much faster but may lead to inaccurate results. This is
especially true for the region around singularities which is illustrated in figures 6(a) and (b) for
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Figure 5. Bulk Green function versus energy of an infinite 1D chain: (a) − Im G (n = 5), (b) Re G
(n = 5), (c) − Im G (n = 7), (d) Re G (n = 7) after n iterations of the iterative method; an
imaginary part δ = 10−2 is added to the energy. The result is compared to the result converged to
precision ε = 10−6.

the imaginary and real parts of the surface GF of the 1D chain calculated using the recursion
method. The same behaviour is observed for the imaginary and real parts of the bulk GF
calculated using the iteration method, as illustrated in figures 6(c) and (d). In these figures two
different imaginary parts of the energy are compared. The deviation of the result obtained with
δ = 10−1 is much less than the result obtained with δ = 10−2 for the same number of iterations
(figures 4 and 5), therefore closer to convergence. However, the result is further away from
the exact result. Thus, higher precision requires a lower imaginary part to the energy which,
however, makes the convergence much slower.

The imaginary part of the energy determines the broadening and the height of the peaks
around the poles. Roughly speaking, convergence is reached when the poles overlap to cover
the energy interval separating the poles δ � W/Npoles where Npoles is the number of poles
and W is a measure of the band width. More precisely, δ should be greater than 1/D0(E0)

where D(E0) is the minimum density of states. If we decrease δ exponentially holding the
precision constant we need an exponentially growing number of poles to maintain a given level
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Figure 6. Green functions versus energy for a 1D chain: (a) − Im G for surface (n = 30), (b) Re G
for surface (n = 30) after n iterations of the recursive method, (c) − Im G (n = 5), (b) Re G
(n = 5) after n iterations of the iterative method; an imaginary part δ = 10−1 is added to the
energy. The results are compared to the result converged to precision ε = 10−6 and δ = 10−2.

of convergence. The convergence of the recursive and iterative methods at one energy point
x = 0 is shown in table 1 for different values of δ. As we see, the exponential increase in
precision leads to exponential slowing down of the recursive method because the number of
poles scales linearly with the number of iterations (N for the surface, 2N for the bulk GF).
The iterative method suffers only linear decrease in performance because the number of poles
increases exponentially (2N for the surface, 2N+1 for the bulk GF). The eigenvalue method
remains of constant complexity with increasing precision because the direct methods used for
solving for the CBS depend only on the rank of the Hamiltonian matrix.

8. Off-diagonal matrix elements

From the on-site matrix element of the GF one can obtain all necessary GF matrix elements [22].
In bulk, due to the translational invariance (Gnn = G00), we do not need more than G00 and T
and T̄ to obtain all GF matrix elements using the definition of the ATMs, equation (33). In the
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Table 1. Number of iterations needed for convergence versus imaginary part of the energy at a
fixed precision ε = 10−6.

δ 0.1 0.01 0.001 0.0001 0.000 01

Recursive 151 1519 15 201 152 015 1520 158
Iterative 10 13 16 20 23
Eigenvalue 1 1 1 1 1

case of a surface, the Gnn deeper in the material are not the same as those closer to the surface.
We can devise recurrence relations that will allow us to obtain all diagonal matrix elements
and from them all off-diagonal matrix elements. Starting from equation (8) for n = n′ > 0

H̄0Gn,n = −1 − H̄1Gn+1,n − H̄−1Gn−1,n (62)

we can write this using the definition of T as

(H̄0 + H̄1T )Gn,n = −1 − H̄1̄Gn−1,n, (63)

from which, using the definition of the SGF equation (24) and the relation of the ATM to the
SGF equation (37), we obtain

Gn,n =
{

G00 + T Gn−1,n−1S n � 1
G00 + T̄ Gn+1,n+1 S̄ n � −1

(64)

where the second relation was obtained in a similar way. The matrices S and S̄ are the analogues
of T and T̄ used to raise or lower the second index of the GF. They are defined as follows:

Gn,m+1 = Gn,m S n � m,
Gn,m−1 = Gn,m S̄ n � m.

(65)

An expression for the BGF and the SGF can be derived in terms of S and S̄ using a similar
argument to that in the derivation of equations (35) and (36). The bulk GF becomes

G00 = −(H̄0 + SH̄1̄ + S̄ H̄1)
−1, (66)

and the surface GFs to the left and right are

GR
00 = −(H̄0 + SH̄1̄)

−1,

GL
00 = −(H̄0 + S̄ H̄1)

−1.
(67)

Comparing equation (35) with (66) one can find a simple relationship between the two kinds
of ATM

S = H̄1T (H̄1̄)
−1 S̄ = H̄1̄T̄ (H̄1)

−1. (68)

Finally, we can use T (T̄ ) and S(S̄) as raising and lowering operators on Gn,n to obtain all GF
matrix elements.

9. Conclusions

We consider various methods of calculating the Green function of surfaces. In our unified
treatment it becomes easy to see that the methods essentially amount to different ways of
calculating the self-energy associated with the surface. The recursive method being the oldest
is also the slowest but it has an advantage that it could be applied to a non-homogeneoussystem
virtually constructing the GF of the system layer by layer. The iterative method provides the
possibility for an accelerated scheme which is very practical and convenient if the problem is
formulated completely in the GF formalism. It bypasses the calculation of wavefunctions and
the complex band structure. If the wavefunctions are needed the eigenvalue method presents
the better alternative because it allows the calculation of the wavefunctions and the GF in one
step. It can also be the fastest method for higher precision applications.
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Appendix. Complex band structure

According to Bloch’s theorem, the wavefunctions on adjacent principal layers are related by
ψ(r+�z) = eikz�zψ(r)where kz is the component of the crystal momentum in the z direction.
This relation implicitly assumes that the principal layers are chosen so that there is translational
invariance in the z direction with the period of the principal layer. This is usually the case. If
this assumption is violated an additional phase factor involving k must be included as discussed
below.

In an infinite solid only Bloch states with real crystal momentum can exist. States
with complex crystal momentum would diverge at infinity. In a finite solid, however, both
propagating and evanescent states (with complex crystal momentum) can exist. In this
appendix we shall review techniques for finding the complex band structure, i.e. all values
of crystal momentum, both real and complex. The complex crystal momenta are important for
determining the GF near a surface or interface.

The problem of determining the CBS has been revisited in the literature many times; here
we follow [25]. We have reformulated this approach for principal layers. The objective is
to find all (both real and complex) eigenvalues of the Schrödinger equation (4) in the basis
of planar orbitals (1). We construct the companion matrix of the matrix H̄ by the following
manipulations:

− (H̄1)
−1 H̄0C0 − (H̄1)

−1 H̄1̄C1̄ = C1 = eikz C0, (A.1)

where the last equality follows from equation (3). We can rewrite these equations in the
equivalent form,( −(H̄1)

−1 H̄0 −(H̄1)
−1 H̄1̄

1 0

) (
C0

C1̄

)
= eikz

(
C0

C1̄

)
, (A.2)

which defines the eigenvalue problem for the companion matrix of the Hamiltonian which is
also identified as the transfer matrix T in section 6. The complex band structure is derived
from the eigenvalues {λn} of the companion matrix and kn

z = −i logλn .
This approach has the problem that sometimes the matrix H̄1 may not have an inverse. In

that case we can solve the generalized eigenvalue problem(
H̄0 H̄1̄
1 0

) (
C0

C1̄

)
= eikz

( −H̄1 0
0 1

) (
C0

C1̄

)
. (A.3)

The principal layer is defined as a unit cell in the direction perpendicular to the layers.
If the number of topologically different layers is larger than the range of the interaction there
will be many zero blocks in the Hamiltonian matrix elements. In these cases it is convenient
to keep the PL just large enough so there is no interaction beyond neighbouring PLs although
now the neighbouring PLs would be displaced by some vector�d̄ with respect to each other.
In this case the wavefunction will acquire an additional phase factor going from layer to
layer C1 = ei(kz+k̄·�d̄)C0, where k̄ is the wavevector in the plane of the layers. In this case,
equation (A.2) still applies, only the eigenvalues will be modified kn

z = −i logλn − k̄ ·�d̄.
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The eigenvalues come in pairs: propagating or decaying to the right k> with Im(kz) > 0
if kz ∈ C or Vg > 0 if kz ∈ R and propagating or decaying to the left (k<) with Im(kz) < 0 or
Vg < 0. In practical calculations, one has to add a small imaginary part to the energy in order
to make the matrix factorization stable. This will displace the propagating states off the real
axis. Fortunately, one can predict the direction of the change. If we add δ > 0 the eigenstate
will change as follows:

| exp(ikz(ε + iδ))| =
∣∣∣∣ exp

(
i

{
kz(ε) +

∂kz(ε)

∂ε
(iδ) + · · ·

})∣∣∣∣ =
∣∣∣∣ exp

(
− δ

vg

)∣∣∣∣; (A.4)

therefore, the states with vg > 0 will acquire a positive imaginary part and the states with
vg < 0 a negative imaginary part.
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